

System Wide Information

Management

Prototyping Activities

Duane Harkness Avaliant LLC

Paul Comitz Boeing Air Traffic Management

AirTraffic Management

Agenda

The Data Dilemma

- GCNSS I
 - Near Term Strategies
 - Prototype SWIM Demonstration
 - Surveillance Data Network
- GCNSS II
 - Service Oriented Architecture
- Summary

The Data Dilemma

- Poor Data Quality costs US business \$600 billion/year ¹
- Data Definition and distribution challenges are common
 - Aviation
 - Geography
 - Banking

SWIM — Data definition and distribution

1. Eckerson, Wayne W., Data Quality and the Bottom Line, The Data Warehousing Institute, http://www.dw-institute.com

The Aviation Data Dilemma

Current SF 21 Approach

EuroControl AIXM Approach

<Position> <geoLat>514326.67N</geoLat> <geoLong>0032345.67E</geoLong> </Position>

SF 21 Approach

Complex, error prone, unique

AIXM Approach

Simple, widely supported by **COTS** tools Based on ER Model

AirTraffic Management

Common Data Representation

- Create/engineer/ develop
 - Air Traffic Management Data Model
 - Leverage:
 - EuroControl Air Information Exchange Model (AIXM)
 - EuroControl EAD Database
- Broad acceptance in industry for Spatial Data Models
 - Intel, Energy, Telecom,Transportation

Example:
A data model for transportation

Surveillance Data Model

- Surveillance Data Network (SDN) Sensor Interface data stream
- Approach
 - Provide global data specification
 - Interagency Approach
 - TADIL J
 - PPLI and Environment

GCNSS Common Schema for FIR

Common Data Representation allows Application Integration

Data Model for Flight Information Regions Document complies with XML schema

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- Paul Comitz August 2003 -->
<!--Sample XML File for FIR Sector 72 Oceanic East-->
<FIR xmlns="http://www.paulhcomitz.net/namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
C:\adsProject\xml\firSchema1.xsd">
    <id>String</id>
    <description>FIR Sector 72 Oceanic East OCNE</description>
        <datum>WGS-84</datum>
        <pointList>
            <point>
                <latitude>24.5</latitude>
                <longitude>-89.2333</longitude>
                <sequence>1</sequence>
            </point>
            <point>
                <latitude>26.91667</latitude>
                <longitude>-8958334</longitude>
                <sequence>2</sequence>
            </point>
            <point>
                <latitude>28.26667</latitude>
                <longitude>-89.88333</longitude>
                <sequence>3</sequence>
            </point>
            <point>
                <latitude>28.26667</latitude>
                <longitude>-89</longitude>
                <sequence>4</sequence>
            </point>
            <point>
                <latitude>28.14167</latitude>
                <longitude>-88</longitude>
                <sequence>5</sequence>
            </point>
                <latitude>27.5</latitude>
                <longitude>-87.68333</longitude>
                <sequence>6</sequence>
            </point>
```

Trivial Application Integration

GCNSS Segment C Surveillance Data Network

- Segment C Strategy
 - Based on lessons (re-) learned in Segment B

Demonstrate a Reusable Data Architecture

SWIM Concept

Common Information Management (CIM) Services

Common Data Transport (CDT) Services

SWIM Enables –

Information sharing

Information assurance

Systems integration

Why SWIM?

N Systems => N(N-1)/2 Interfaces

Why SWIM?

N Systems => N Interfaces

CIN-41 SWIM Prototype

Objectives

- Demonstrate SWIM integration concepts
- Model behavior of representative SWIM technologies
- Preliminary development work that is re-usable for GCNSS II

Approach

- Develop simple prototype based on enhanced Arrival Management
- Focus on Common Support Services
 - Network connectivity
 - Publish/Subscribe interaction
 - XML-based information exchange
 - Service discovery

CIN-41 Demo Scenario (Step 1)

CIN-41 Demo Scenario (Step 2)

CIN-41 Demo Scenario (Step 3)

CIN-41 Demo Implementation

CIN-41 Demo Physical Setup

CIN-41 Demo DataVisualizer

Future Steps

- Architecture:
 - Data modeling
 - SWIM architecture definition
- Prototype:
 - Explore commercially-available information management tools
 - Expand range of supported applications
 - Prototype "deployment"

GCNSS Segment C Flight Demonstrations Flight Demonstration Objectives

- Demonstrate use of ADS-B and SDN in multi-radar terminal area
- Demonstrate a surveillance picture consistent with 3-mile enroute spacing
- Integrate multi-sensor tracking capability (fused radar & ADS-B)
- Use SDN to provide a "Common Air Surveillance Picture (CASP)" for use by Air Traffic and in support of FAA Advisory Services

Segment C Results

- ➤ Test Flights Feb 19 and 23 2004
 - Flew with 2 GA aircraft ADS-B/UAT equipped
 - Potomac Consolidated TRACON/Washington ARTCC radar available via SDN
 - Ground Based Transceivers integrated into SDN
 - -Mitre CAASD, McLean Va
 - -Frederick, Md.
 - -WJHTC Atlantic City, NJ
- >Successfully demonstrated:
 - Integration and data distribution of multiple surveillance assets
 - Output of multi-sensor tracker (MST) is a realization of a "Common Air Surveillance Picture" (CASP)
 - Cooperative targets only
 - Traffic picture sent via network and CASP to test aircraft
 - SDN outputs meet FAA surveillance requirements for 3-nmi separation in EnRoute airspace

Surveillance Connectivity

Today

Tomorrow

Connection Lines

Service Oriented Architecture (SOA) for SWIM

- Provider is any source of ATM information such as a database or application
- Requester is any consumer of ATM information such as a user or another application
- Requesters Interact with providers through a well defined Service Interface.
- Providers Advertise their service interface to SWIM so that ad hoc requesters can Find appropriate services via Discovery.
- Common Support Services such as security, QoS and persistence ensure interaction requirements are met.

All applications will integrate

SOA Concept: Surveillance Service

- An SOA operating concept for SWIM might include surveillance, weather, flight management, aeronautical and resource management information services
- Surveillance example:
 - 1. A surveillance component receives data from a sensor resource
 - 2. The availability of this data is published in a service directory (i.e. UDDI)
 - 3. An organization needing surveillance data searches the directory for an appropriate service
 - 4. The directory returns a reference to the service
 - 5. The requesting organization accesses the service directly

Applications and Data Access are loosely coupled - by design

Summary

- SWIM
 - Data definition and distribution
- Near Term
 - Reusable data models
- GCNSS 2
 - Emphasize data architecture
 - Information Architecture
 - Build concrete reference implementation
 - Not a "demo"
 - Surveillance Data Network is the "killer app" for SWIM

